Margaret Sanger – Mother of Modern Contraception

I am very excited to welcome guest blogger Tami Stout. She is currently studying political science and women and gender studies and has kindly offered to give us her insight about Margaret Sanger. Thank you Tami!

margaret-sanger-1-sizedMargaret Louise Higgins Sanger (1879 – 1966) was an American activist born in 1879 in Corning, New York.  Sanger was one of eleven children born to an Irish-Catholic immigrant working class family.  Her mother, Anne Purcell Higgins died of tuberculosis and cervical cancer at the age of 50 having born the strain of 11 pregnancies and seven stillbirths.  As the story goes, Margaret lashed out at her father over her mother’s coffin that he was responsible for Anne’s death due to so many pregnancies.

Margaret was determined to have a different future.  She left Corning to attend nursing school in the Catskills.  Margaret married William Sanger in 1902 and had three children of her own.  In 1910, the Sangers moved to New York City and settled in Greenwich Village.  The area was known as being bohemian and supported the more radical politics of the time.

Margaret returned to New York City to work as a visiting nurse on the Lower East side.  Here was where she saw the lives of poor immigrant women.  Without effective contraceptives many of these women, when faced with another unwanted pregnancy, resorted to five-dollar back-alley abortions or attempted to self-terminate their pregnancies.  After botched abortions Margaret was called in to care for the women.  After watching the suffering and trauma so many women experienced, Sanger began to shift her attention away from nursing to the need for better contraceptives.  Sanger objected to the suffering and fought to make birth control information and contraceptives available.  She began dreaming of a “magic pill” to be used to control pregnancy.  “No woman can call herself free until she can choose consciously whether she will or will not be a mother,” Sanger said.

Indicted under Comstock Laws for sending diaphragms through the mail and arrested in 1916 for opening the first birth control clinic in the country, which was only open for nine days before she was arrested, Margaret Sanger would not take no for an answer.  In 1921 she founded the American Birth Control League, the forerunner to Planned Parenthood and she spent the next thirty years trying to bring safe and effective birth control to the American woman.

Gregory Pincus

Gregory Pincus

By the 1950’s, although Sanger had many victories, she was far from finished.  Frustrated with limited birth control options on the market, Margaret still was in search of the “magic pill”.  No longer a young woman and in failing health, she was not ready to give up and made it her mission to find someone to complete her vision of a contraceptive pill as easy to take as an aspirin, inexpensive, safe, and effective.  In 1951 Sanger met Gregory Pincus, an expert in human reproduction.  Now all she needed was the money to make her vision happen and she found that in heiress Katherine McCormick.  Pincus partnered with Dr. John Rock and the collaboration led to the FDA approval of Enovid, the first oral contraceptive in 1960.

Katherine McCormick

Katherine McCormick

There were of course bumps in the road on the way to an effective contraceptive available to the masses.  Pill trials in Puerto Rico did cause health problems and deaths due to extremely high levels of hormones.  Sanger also faced controversy over her association with eugenics.  Sanger’s grandson, Alexander Sanger, chair of the International Planned Parenthood stated that his grandmother “believed that women wanted their children to be free of poverty and disease, that women were natural eugenicists, and that birth control was the panacea to accomplish this.”

With the invention of the “magic pill” Margaret Sanger accomplished her life-long goal of bringing safe, affordable, and effective contraception to the masses.  Not only did she see the pill realized, but four years later, at the age of 81, Margaret Sanger witnessed the undoing of Comstock Laws.  In the 1965 Supreme Court case Griswold v. Connecticut, the court ruled that the private use of contraceptives was a constitutional right.  When Sanger passed away a year later, after more than half a century of fighting for the rights of women to control their own fertility, she died knowing she had done what she set out to do.

Margaret Sanger was a champion of women and by giving women the right to control their own fertility, she gave them the right to control their lives.  No longer held hostage by your body, you have the right to seek education, employment, and a rich and fulfilled life whether that involves children or not.


Sanger's Birth Control Clinical Research Bureau operated from this New York building from 1930 to 1973. It is now a National Historic Landmark.

Sanger’s Birth Control Clinical Research Bureau operated from this New York building from 1930 to 1973. It is now a National Historic Landmark.

Caroline Herschel – 18th Century Astronomer

Caroline Herschel c. 1829 (source)

Caroline Herschel c. 1829 (source)

As a girl, Caroline Herschel’s expectations were limited, but she had a quick mind and the ability to learn. Although most of what Caroline learned would be to benefit and help her brother, she went on to become a brilliant astronomer in her own right, discovering nebulae, star clusters, and eight comets.

Caroline Herschel was born March 16, 1750 in Hanover (now in Germany.) She was the fifth of six children born to Isaac Herschel and Anna Moritzen. Her parents were industrious and hard-working, her mother a housewife and her father a gardener and musician. Her mother saw no need to educate a girl, but Caroline was able to learn the basics of reading and writing, and because of the family talent for music, her father insisted that she learn to play the violin.

Caroline suffered a couple of childhood illnesses that left their mark; smallpox when she was three left her with scars and a damaged left eye; typhus at the age of ten stunted her growth, leaving her with an adult height of 4′ 3″. Her mother showed her little affection and envisioned Caroline as her housekeeper. Her father reminded her frequently that she was unlikely to find a husband because she had no fortune or beauty. She was probably looking at a bleak future.

In 1767, Caroline’s father died and her favorite brother William, who had moved to England, suggested that she come live with him. William’s intention was to make his living as a musician and to study astronomy, and he wanted Caroline to come keep his house. At first her mother refused to give up the work that Caroline did for her, but she agreed when William promised to send her the money to get a maid to make up for Caroline’s absence. So in 1772 at the age of 22, Caroline returned with her brother to England.

Telescope made for Caroline by William in 1795 (Photo: Wikipedia user Geni, source)

Telescope made for Caroline by William in 1795 (Photo: Wikipedia user Geni, source)

Even though she still kept house, Caroline’s life was completely different with her brother. She studied math for the first time, so that she could keep his household accounts. William gave her voice lessons and she learned to play the harpsichord so that she could accompany him. Soon she became well-known for her singing and began to get engagements for solos, although she refused if William couldn’t be the conductor. William also insisted that she take lessons in dancing and how to conduct herself in society. She thought many of the people she met in society shallow, but the lessons would serve her well because she and William soon came to the attention of King George III for their work in astronomy.

William’s astronomy work began to take up more and more of his time. Displeased with the telescopes available he began to build his own and was soon selling them to others. Caroline and their brother Alexander ground by hand the mirrors needed for the telescopes, and Caroline did William’s calculations, carefully cataloging his observations in the night sky.

On March 13, 1781, William spotted what he thought was a new comet, but after careful observation realized that it was a planet. His discovery of the planet Uranus brought him to the attention of the King. The next year William was made the official astronomer of King George III and received a pension of £200. Caroline was no longer just a helper, but an apprentice and would soon be credited with her own discoveries. This also brought with it more visibility in society and with the royal family. William and Caroline were often invited to Windsor, and Caroline got to know the princesses Sophia and Amelia as she patiently answered their questions about the stars.

Caroline never wanted to outshine her brother, but in 1783 while he was away she discovered 3 nebulae. Then on August 1, 1786, she discovered her first comet. This discovery brought her to the attention of the scientific community and The King gave her a small salary for her work as William’s assistant. It was only £50, but she wrote in her diary that it was the first money she had ever received that she felt she could spend on whatever she wished.

Sir William Herschel c. 1805 by James Sharples (source)

Sir William Herschel c. 1805 by James Sharples (source)

Around this time William got married and Caroline began doing more work on her own. Between 1788 and 1797, she discovered seven more comets and began work on revising Flamsteed’s star catalog. She verified the information, made corrections, and added 560 stars that she and William had observed. She submitted this catalog to The Royal Society for publication. But her most impressive and recognized work was The Reduction and Arrangement in the Form of Catalogue, in Zones, of All the Star-Clusters and Nebula Observed by Sir William Herschel in His Sweeps. For this work, the Royal Astronomical Society awarded her a Gold Medal calling it “a work of immense labor” and “an extraordinary monument to the unextinguished ardor of a lady of seventy-five in the cause of abstract science.”

The medal from the Royal Astronomical Society was awarded to her in 1828, six years after William’s death and after she had returned to Hanover. She also received medals from the King of Denmark and the King of Prussia, and in 1835, the Royal Astronomical Society bestowed honorary membership on two women for the first time, Caroline Herschel and Mary Somerville. The extract for the award stated that “the time is gone by when either feeling or prejudice, by whichever name it may be proper to call it, should be allowed to interfere with the payment of a well-earned tribute of respect.”

For Caroline, however, her crowning achievement probably came only a few months before she died. The work mentioned above was the basis for her nephew’s study of his fathers work. William’s vast undertaking, The Survey of the Heavens, was completed when his son Sir John Herschel completed and published the survey of the heavens in the southern hemisphere. She received a copy of Cape Observations just months before she died on January 9, 1848 at the age of 97.

Even in her death she was concerned for her brother’s fame. Her epitaph, which she composed, states in part “The eyes of her who is glorified were here below turned to the starry heavens. Her own discoveries of comets and her participation in the Immortal labors of her brother, William Herschel, bear witness of this to future ages.” Working with her brother, she advanced the science of astronomy and the recognition of women in science.

Caroline Herschel at 92 (source)

Caroline Herschel at 92 (source)

Women in Mathematics by Lynn Osen
Women in Science: Antiquity through the Nineteenth Century
by Marilyn Bailey Ogilivie
Women in Science by H. J. Mozans

Read about other Famous Women in Math and Science

Irène Joliot-Curie – For the Joy of Science

In 1925, Irène Curie walked into an auditorium of 1000 people to defend her dissertation. This was big news because she was the daughter of two time Nobel Prize winner Marie Curie. The pressure could have been enormous, but as usual Irène was calm, confident, and dressed unfashionably! From an early age, Irène had dealt with her parent’s fame both positive, such as when at the age of six she calmly told the reporter who came to the house that her Nobel Prize winning parents were at the laboratory, and negative when a classmate handed her a newspaper article about her mother’s affair with Paul Langevin. She had come to see fame as something external and of no real importance. She didn’t pursue her research for fame, but for the sheer joy of the science itself.

At first glance, Irène was a quiet, shy child, some might even say somber, but as time would show, she just had little energy or attention for things that in her mind didn’t matter or that bored her. Born in September of 1897, her parents Pierre and Marie Curie were in the midst of their most intense period of research. In spite of this, she was a wanted and welcome addition to the family. Limited time and resources, however, did mean that the young parents needed help, and this came in the form of Pierre’s father, Eugene Curie. Pierre’s mother died shortly after Irène was born, so Eugene moved into the house to take care of her.

Eugene was a more openly affectionate person than either Marie or Pierre, and gave Irène, and later her sister Eve, born in Paris in 1904, much of their emotional foundation. Irène later said that many of her values and beliefs about religion and politics came from her grandfather rather than her mother. When Pierre died in 1906, Marie was so distraught that she wouldn’t let his name be spoken around her. Eugene helped the girls by talking to them and teaching them about their father. After Eugene died in 1910, Marie, Irène, and Eve became much closer and remained close for their entire lives.

Irene Curie as a child with her mother and sister Copyright © Association Curie Joliot-Curie

In spite of a more reticent personality, Marie and Eugene agreed on many things. Because of his unique personality and abilities, Pierre’s parents had home-schooled him, and Marie felt that the same approach would be better for Irène. To supplement the public school, she organized a cooperative among other scientists and academics to provide classes in their homes for their children. The subjects ranged from mathematics and science, to literature and art. Emphasis was put on creativity, play, and self-expression. Other physical and practical activities weren’t neglected either. Marie made sure the girls learned to cook, knit, and sew, as well as to swim, bicycle, and ride horseback. Irène was especially athletic. She took long backpacking trips during the summer, frequently swam the Australian crawl in the Seine, and could dance until early in the morning. It didn’t phase her that backpacking and the Australian crawl were considered men’s sports.

From an early age it was clear that Irène was very much like her father. Among her friends she was calm and relaxed, but she was less comfortable with strangers, rarely smiling in public. Her thought process was much like his as well, not as quick as Eve, but a deep analytical thinker. It was also clear that Irène would be good at science. After the cooperative ended, Marie continued to teach Irène mathematics to give her the foundation she needed, even sending problems back and forth in the mail when Marie was away at conferences. After a couple more years in public school, Irène finally entered the Sorbonne to study science.

In 1914, World War I interrupted Irène’s studies. Marie had written to Irène saying that she hoped they could both be of service, so when her mother developed a mobile x-ray unit, she went into the field to help operate and maintain them. But to say that she helped her mother is to greatly understate the situation. The need was so great that they worked independently of each other. Irène went to the front to set up, repair, and operate the units. Often they were used during surgery to help locate shrapnel in the body. When she wasn’t at the front trying to convince experienced military surgeons that a teenaged girl knew more about x-rays and geometry than they did, she was training other technicians. In spite of spending her eighteenth birthday alone at the front, she seems to have handled this time with composure and a confidence that is rare, although her mother never doubted her. Irène later said, “My mother had no more doubts about me than she had about herself.”

Irene and her mother Marie Curie working at a hospital in Belgium in 1915 Copyright © Association Curie Joliot-Curie

Once the war was over, Irène returned to the Radium Institute, run by Marie, to continue her research and study. Here in 1924, just before receiving her doctorate, Irène met Frédéric Joliot. Two years her junior, Frédéric was outgoing and charming. According to their daughter Hélène, they were “opposites in everything.” He was from a big family, had a wide variety of interests, and was much more sociable than Irène, but they shared some very important things. They loved outdoor sports, had similar political views, and loved science. When they were married in October of 1926, they had lunch at Marie’s apartment and went back to work.

Irène and Frédéric worked together for the rest of their lives and collaborated on their most important work. As with other creative teams, their approaches were very different. He moved quickly from one idea to the next, taking creative leaps, while Irène was slower in her thought process, but moved steadily toward logical conclusions. Several times they made important discoveries, but didn’t interpret the information correctly. One of these experiments was similar to that done by Otto Hahn which was interpreted by Lise Meitner leading to Hahn’s Nobel Prize. Finally, in 1935, Irène and Frédéric Joliet-Curie received a Nobel Prize in Chemistry for the discovery of artificial radioactivity.

In the intervening years, Irène had given birth to a daughter, Hélène in 1927, and to a son Pierre in 1932. She loved being a mother and in many ways was traditional, but she maintained her career. Although Marie died in 1934, she had lived long enough to see the experimental results that she knew would ensure her daughter a Nobel Prize. So in 1935, their lives were marred by only one thing – the growing Fascist threat in Europe.

After 1935, Irène and Frédéric no longer collaborated directly in their work. Frédéric took a position at the Collège de France where he worked in nuclear physics, building a cyclotron and raising funds for scientific research. In this position he became very powerful and contributed greatly to France’s ability to produce nuclear energy. Irène became a professor at the University of Paris, but continued as the research director at the Radium Institute. She also got involved in politics and joined several women’s rights organizations.

Irene and Frederic Joliot in 1934 photo by GFHund for Wikipedia

When the Popular Front, an anti-Fascist coalition, was elected in 1936, Irène was offered and accepted the position of under-secretary of scientific research, making her one of the first women cabinet members in France. As the war progressed, Frédéric joined the resistance and eventually, the Communist party because it was the most active anti-Fascist group in the country. Irène’s activity, however, declined. For almost twenty years she had suffered from tuberculosis and was having to take more and more time away from work and in the Alps on the “rest” cure. Finally, Frédéric, as head of his resistance organization, was forced to go underground and arranged to have Irène and the children smuggled into Switzerland, on June 6, 1944.

After the war, Frédéric was considered a hero, and appointed head of France’s Atomic Energy Commission with Irène as a commissioner. Irène was able to obtain streptomycin to cure her tuberculosis and continue her work for women’s rights and as director of the Radium Institute. For a while things were good, but by 1950, the Cold War was gaining ground and anti-communist sentiments were growing. Both Irène and Frédéric found themselves out of favor and for the first time outside the scientific community. Frédéric was fired from the Commission, and unable to obtain other scientific work, began to work for peace organizations. Irène was at least able to continue her work at the Institute, but the years of work had taken another toll.

Like Pierre and Marie before them, Irène and Frédéric were both suffering from the effects of prolonged exposure to radiation. Their health declined steadily in the 1950s. Even though Marie continued to work and worry about Frédéric’s health, she was finally unable to ignore the effects. On a trip to the Alps, Irène became ill. Returning to Paris, she checked in to the hospital and on March 17, 1856, Irène died of leukemia. Frédéric was too ill to see her for more than a few minutes. He died two years later. By this time the worst of the red scare was past and they were both honored with national funerals. They had spent their lives doing what they loved.

“I discovered in this girl whom other people regarded somewhat as a block of ice, an extraordinary person, sensitive and poetic, who in many ways gave the impression of being a living replica of what her father had been. I had read much about Pierre Curie. I had heard teachers who had known him talking about him and I rediscovered in his daughter the same purity, his good sense, his humility.” ~ Frédéric Joliot-Curie about Irène

Nobel Prize Women in Science by Sharon Bertsch McGrayne
Obsessive Genius: The Inner World of Marie Curie by Barbara Goldsmith
Marie Curie – early life
Marie Curie – scientific discoveries and Nobel Prize

Read about other Famous Women Mathematicians and Scientists.

Mary Fairfax Somerville – Mathematics by Candlelight

Mary Fairfax Somerville, c. 1834, by Thomas Phillips

Mary Fairfax Somerville, c. 1834, by Thomas Phillips (source)

“I was annoyed that my turn for reading was so much disapproved of, and thought it unjust that women should have been given a desire for knowledge if it were wrong to acquire it.”  ~ Mary Fairfax Somerville

The 17th and 18th century women mathematicians and scientists that we’ve looked at so far have been accepted into intellectual circles. Their intelligence and works were recognized and in Italy they were even allowed to teach. They were accepted that is, once they got there. Maria Agnesi, Emilie du Chatelet, and Laura Bassi all had one advantage – parents, or at least fathers, that indulged their intellectual curiosity and gave them the education they craved. Mary Fairfax Somerville did not have this advantage.

As a young girl, Mary Fairfax, born in Jedburgh, Scotland on December 26, 1780, was by her own admission a “wild creature.” Her father, a Vice Admiral in the British Navy, was away from home for long periods of time and her mother was quite permissive. With the exception of learning to read the Bible, the catechism, and daily prayers, she received no academic lessons. She was taught “useful” skills, how to care for the garden, preserve fruit, tend the chickens and cows, tasks reserved for the women of the household. Apart from these chores, there were few demands made on her time, so she would roam the countryside and seashore near her home in Burntisland, Scotland observing sea creatures and birds, collecting things, and learning the names of the plants around her home. At night, the stars she could see from her window held equal fascination.

When she was about nine years old, this carefree existence came to an end when her father returned from a long voyage to learn that Mary’s reading skills were minimal and she couldn’t write. At least the basics were expected of young women, so Mary was sent to a school run by Miss Primrose. In spite of her intellectual curiosity, Mary didn’t fair well at the school where she was expected to prepare lessons laced into stiff stays and steel busks designed to improve her posture. The teaching techniques focused on memorization including pages from the dictionary and gave little room for curiosity or critical thinking.  After one year at the school, she returned home and continued her wandering existence, but at least she had increased reading skills that allowed her to enjoy a small number of books in their home. Mary’s only other formal education was a year spent in a local school where she learned to “write a good hand”, basic arithmetic, and the womanly arts of needlework, painting, music, etc.

Mary’s interest in mathematics was piqued by a couple of chance encounters. Once during a party she was paging through a women’s magazine and came across a puzzle. When she looked at the answer it had x’s and y’s in the solution. Curious, she asked a friend who told her that it was something called algebra, but she couldn’t tell her what it was. The second conversation that would set the stage for her life long interest was an overheard conversation between a painting instructor and a male student. The instructor told him that he should study Euclid’s The Elements about geometry to better understand perspective.

Now Mary knew the names of two things she wanted to study, algebra and geometry, but how could she get the required books? To do this she conspired with her brother’s tutor. His skills were limited, but he agreed to obtain books for her and demonstrate the first problems in The Elements. She was on her way! Each night after the rest of the household retired, Mary would study mathematics by candlelight. But then the candle supply started to diminish and it was noticed.

For many people during this time, keeping women away from intellectual pursuits wasn’t just a matter of propriety. Some people believed that women’s minds couldn’t handle it and it would drive them crazy, or that mental exertion would take away from their ability to have children. In essence, that they had a “delicate constitution” that had to be protected. In her recollections of childhood, Mary recalls her father saying, “Peg, we must put a stop to this, or we shall have Mary in a straight-jacket one of these days. There was X who went raving mad about the longitude.” So when her parents discovered that she was studying at night, the servants were instructed to take away her candles. However, at this point she had already progressed through the first six books of Euclid, so she depended on her memory and worked through the problems in her mind each night until she knew them thoroughly.

In 1804, Mary was married to a distant cousin, Samuel Greig. Although not interested himself, it seems that Greig tolerated Mary’s intellectual interests, but the marriage was short-lived. Greig died in 1807 leaving Mary with two boys and a small inheritance. She returned to her parent’s home, but her inheritance gave her an independence that allowed her to continue her studies. She began reading The Mathematical Repository, a journal which aimed at exposing the general public to some of the new developments in mathematics. Through the journal, she began a correspondence with William Wallace a professor at the University of Edinburgh. Wallace provided Mary with a list of important books on mathematics and science, and she began to accumulate a library.

Dr. William Somerville c. 1840 (source)

Dr. William Somerville c. 1840 (source)

Mary’s second marriage to another cousin, Dr. William Somerville, inspector of the Army Medical Board, was completely different. Dr. Somerville didn’t just tolerate Mary’s interests, he encouraged them. Together they raised a family, traveled, collected specimens, and associated with some of the greatest scientists and mathematicians of the day. They would remain together for the rest of their lives.

Mary’s first work was published in the Philosophical Transactions of the Royal Society of London and titled “On the Magnetizing Power of the More Refrangible Solar Rays.” Although she was not a member of the Society at the time (1826) and her paper had to be presented by her husband, it attracted the attention of Lord Brougham, of the Society for the Diffusion of Useful Knowledge. He commissioned her to write what would become probably her greatest and most well-known work, a translation of Laplace’s Mécanique Céleste.  The purpose of the Society of the Diffusion of Useful Knowledge was to make new scientific discoveries accessible to the general public that might not have the educational background to read the original documents. As it turned out Mary had a gift for this type of writing.

Mary had studied Laplace’s work, but being largely self-taught and having doubts about her ability to do it justice, she extracted a promise from Lord Brougham and her husband that if it wasn’t sufficient it would be burned. She spent the next four to five years working on it and when it was complete it was much more than Lord Brougham needed. Her introduction alone met his needs and was published separately, but the entire work was published as The Mechanism of the Heavens and became a favorite among students at Cambridge. She had a gift of being able to communicate in clear, concise terms, complicated subjects, translating as she said “algebra into English.” Her later works include On the Connection of the Physical Sciences published in 1846, Physical Geography in 1848, and Molecular and Microscopic Science in 1860.

Mary Somerville continued writing for the rest of her long life. She died in Naples, Italy on November 28, 1872. Her legacy is one of excellently written scientific books that continued in use for many years, but also one of what a woman can do when she has a drive to do it. As she said herself it is indeed “unjust that women should have been given a desire for knowledge if it were wrong to acquire it.”

Personal Recollections from Early Life to Old Age of Mary Somerville by Martha Somerville
Women in Mathematics by Lynn Osen
Notable Women in Mathematics edited by Charlene Morrow and Teri Perl

Read about other Famous Women Mathematicians and Scientists.

Laura Bassi – Italian Physicist (1711 – 1778)

Laura Bassi by Carlo Vandi

Laura Bassi by Carlo Vandi (source)


The entrance of women into the sciences has been a long process beginning several centuries ago. It’s not easy to find these women in the 18th century, but those that made a name for themselves did so because they were far from ordinary. Admittance into this formerly all male club seems to have begun in Italy (at least for post-Renaissance Europe,) specifically the University of Bologna where Laura Bassi became the first woman professor of physics in Europe.

Born November 29, 1711, Laura Bassi was the only child in her family to survive to adulthood. As with many (maybe most) scientifically inclined women prior to the 20th century, she received an education because her father recognized her ability and brought tutors into their home. This was a privilege reserved for the well-to-do, if not exclusively for the aristocracy. Bassi’s father was a successful lawyer, but the family was not of the nobility.

From the age of five Laura was instructed in French, Latin, and mathematics by a cousin, and later by the family physician in philosophy, natural philosophy, metaphysics, and logic. Her abilities were known throughout the city attracting attention of people who would visit her home to meet her. Similar to the salons in France, the intellectual elite in Italy would gather in homes to discuss philosophy, literature, science, mathematics, etc. Laura seems to have been put on display in her home in much the same way Maria Agnesi was.

In 1732, in a public debate Laura presented and defended her ideas regarding Newton and the new physics. She was awarded her doctorate and offered a position teaching at the University of Bologna. This required another public examination where she was successful, becoming the first woman professor of physics in a European University. As with Maria Agnesi, there is disagreement among scholars as to the extent of her teaching responsibilities. Some think that she was limited to occasional lectures, others believe she had a full teaching load. It seems to be a matter of propriety. Lectures in public would attract both women and men, but teaching at the university would usually entail being alone in a classroom with all male students.

Medal commemorating Laura Bassi, Italy 1732 (source - Wellcome Images)

Medal commemorating Laura Bassi, Italy 1732 (source – Wellcome Images)

This situation was relieved when in 1738 she married Giovanni Guiseppe Veratti, a fellow scientist and professor. As a married woman, the university made allowances for Bassi to lecture in her home. Bassi and her husband had eight to twelve children. There is disagreement on the number of children, but baptismal records seem to support eight, five of whom survived to adulthood. Laura and her husband shared a love of science, created a laboratory in their home, and performed experiments together. Teaching from her home gave her more flexibility to perform experiments and to choose which topics she taught.

During her examination for her professorship, she attracted the attention of Cardinal Prospero Lambertini (later Pope Benedict XIV) who was impressed and extended his support to Laura in her studies. In 1745, he appointed her to an elite group of scholars known as the Benedettini in which she was the only woman. Originally intended to be a group of 24, Lambertini met with resistance when he wanted to appoint Bassi to one of the positions. He then added a twenty-fifth position for her. After Bassi’s death this seat remained vacant until the 1800s. The purpose of the Benedettini was to encourage scientific advancement in Italy. Each member was responsible for writing and presenting a paper to the pope each year. Lambertini also arranged for Bassi to have access to scholarly documents in the Vatican which were usually restricted to male scientists over the age of 24

The scientific community was small in Europe at the time and Bassi communicated with leading scientists. She appears to have been instrumental in getting Voltaire admitted to the Academy of Sciences at Bologna and I’m sure through him she would have been familiar with Emilie du Chatelet’s works on mathematics and physics. At the beginning of her career, Newton’s ideas were still new and somewhat controversial and it’s easy to believe that she may have had a hand in introducing them to Italy. Bassi’s surviving papers however, are related to compression of air, hydraulics, a couple of dissertations on mathematics, and later electricity.

Bassi took on additional teaching positions later in her life. In 1766, she assumed a position teaching physics for the Collegio Montalto, a free seminary where students were taught in professor’s homes and earned degrees in theology or law. In 1776, Bassi’s husband was an assistant to Paola Battista Balbi the Chair and Institute Professor of Experimental Physics when Balbi died leaving a vacancy. Although her husband would have been the obvious choice, Bassi petitioned to be considered for the post. It seems that her skills in mathematics made her a more logical choice and she received the appointment. When Bassi died two years later, her husband took the post and was later succeeded by their son Paolo keeping it in the family until 1796.

I had never taken notice of Laura Bassi until recently. She doesn’t appear at all in several books I have on women in science and math and where she does appear it is cursory. I’m not sure why, because she had a life long career in science. It could be because she didn’t publish major works that were accessible to a lay person. Her works were scholarly and original. Unlike Agnesi, who went on to do work among the poor and destitute after the death of her father, even though she was concerned for the poor, it wasn’t Bassi’s primary focus. And of course, Emilie Du Chatelet was a scientist, but also the lover of a famous man, Voltaire, and we all seem to love to hear about a scandalous woman. Regardless of the reason, we should take note of Laura Bassi. She had tremendous staying power, a long career in a man’s field, and she raised a family. Sounds like something that many contemporary women are trying to do and would be inspired by.

Oh and she has a crater on Venus named for her – what more could you ask from a woman!

Women in Science: Antiquity through the Nineteenth Century by Marilyn Bailey Ogilivie
Women in Science by H. J. Mozans
Laura Bassi“, Encyclopedia of World Biography, 2004

Read about other Famous Women Mathematicians and Scientists.